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In many domains of acoustic field propagation, such as medical ultrasound imaging, 
lithotripsy shock treatment, and underwater sonar, a realistic calculation of beam patterns 
requires treatment of the effects of diffraction from finite sources. Also, the mechanisms of loss 
and nonlinear effects within the medium are typically nonnegligible. The combination of 
diffraction, attenuation, and nonlinear effects has been treated by a number of formulations 
and numerical techniques. A novel model that incrementally propagates the fields of baffled 
planar sources with substeps that account for the physics of diffraction, attenuation, and 
nonlinearity is presented. The model accounts for the effects of refraction and reflection (but 
not multiple reflections) in the case of propagation through multiple, parallel layers of fluid 
medium. An implementation of the model for axis symmetric sources has been developed. In 
one substep of the implementation, a new discrete Hankel transform is used with spatial 
transform techniques to propagate the field over a short distance with diffraction and 
attenuation. In the other substep, the temporal frequency domain solution to Burgers' equation 
is implemented to account for the nonlinear accretion and depletion of harmonics. This 
approach yields a computationally efficient procedure for calculating beam patterns from a 
baffled planar, axially symmetric source under conditions ranging from quasilinear through 
shock. The model is not restricted by the usual parabolic wave approximation and the field's 
directionality is explicitly accounted for at each point. Useage of a harmonic-limiting scheme 
allows the model to propagate some previously intractable high-intensity nonlinear fields. 
R•sults of the model are shown to be in excellent agreement with measurements performed on 
the nonlinear field of an unfocused 2.25-MHz piston source, even in the near field where the 
established parabolic wave approximation model fails. Next, the model is used to compare the 
water path and in situ fields of a medical ultrasound device. Finally, the model is used to 
calculate the spatial heating rate associated with a nonlinear field and to simulate the 
phenomenon of saturation-induced beam broadening. 

PACS numbers: 43.25.Jh 

INTRODUCTION 

There exist a number of theoretical approaches to the 
problem of plane, cylindrical, and spherical wave propaga- 
tion in media with attenuation and nonlinearities. Important 
results and concepts can be found in references such as. 1-3 
The earlier works have been extended to cases of focused or 

unfocused sources, where diffraction effects cannot be ig- 
nored. Treatments of focused sources, including the distor- 
tion of the waveform, focal gain, and focal width with re- 
spect to the small signal case, were examined in 4-6 and 
others. For unfocused beams, the far-field directivity in qua- 
silinear through hard shock conditions was treated in Ref. 7, 
and the beam pattern of higher harmonics were shown to be 
related to the beam pattern of the fundamental and to the 
shock parameter. The formulation of Lockwood et al. ? 
works well in qualitatively describing beam broadening and 
the growth of minor lobes of harmonics, although it did not 
account for the presence of "fingers" or higher harmonic 
sidelobes. 

In the 1980s more extensive treatments havebeen coupled 
with numerical methods for solution of nonlinear distortion 

in unfocused near- and far-field regions, and focused fields. 
Collaborative efforts between groups in Norway (University 
of Bergen) and the U.S. (University of Texas, Austin) have 

used the parabolic approximation and a Fourier series ex- 
pansion (frequency domain solution) to calculate sound 
fields from continuous, axially symmetric sources. 8'9 The 
parabolic approximation is useful for narrow beam profiles 
that vary slowly in the axial direction, and at some distance 
from the source. Focused sources were considered separate- 
ly, also utilizing a parabolic approximation and small aper- 
ture angle and high ka (large aperture to wavelength ratio) 
assumptions. lø'•l The case of second harmonic generation 
under quasilinear conditions in Gaussian beams was de- 
scribed by Du and Breazeale, •2'•3 who used the parabolic 
approximation and the method of successive approxima- 
tions to derive analytic expressions. Bacon •4'15 considered 
the case of focused fields germane to medical imaging, and 
utilized numerical integration of equations also incorporat- 
ing a parabolic approximation. Hamilton and Hart 16'l? 
furthered the earlier work 9 and used a parabolic approxima- 
tion with a Fourier series approach that is solved by a back- 
ward finite difference algorithm applied to the set of coupled 
parabolic differential equations. The approach can incorpo- 
rate a transformed coordinate system that is particularly 
useful for focused fields, and they have demonstrated fine 
detail in solutions, including the presence of higher harmon- 
ic "fingers" in the focal plane beam pattern. 

We have employed an alternative approach to the general 
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problem, in order to gain advantages in computational effi- 
ciency, to develop a formalism that does not require the 
parabolic approximation, and to allow for multiple layer 
propagations. Basically, our methodology utilizes an incre- 
mental propagation of an axially symmetric field from some 
plane at axial distance z from the source to a parallel plane at 
distance z + Az. The concept is illustrated in Fig. 1. The 
normal velocity radial profiles U l (z,r) of a fundamental 
(solid line) and higher harmonics Un (Z,r) (dashed lines), 
n = 2 to N, are propagated together in Az steps. Note in Fig. 
1 that to highlight the nonlinear effect over Az, the initial 
field consists of the fundamental harmonic only. 

First, the diffraction effect is accounted for by utilizing the 
(Fourier) convolution theorem and a discrete Hankel trans- 
form (DHT). The recently developed DHT •8 offers great 
computational savings 19 as compared to the two-dimension- 
al discrete fast Fourier transform. Computing diffraction in- 
volves multiplying the DHT of each harmonic radial profile 
by its appropriate linear transfer function Hn (z,R) [the 
DHT of the point spread function h n (z,r) ], which is equiva- 
lent to convolution in the original spatial domain, as implied 
by Huygen's principle. An inverse DHT gives the desired 
diffracted harmonic radial profile U'n (Z -{- Az, r) (the prime 
notation indicates intermediate results) for each harmonic 
present in the propagation. This diffraction operator is de- 
picted in Fig. 2. Note also the presense of attenuation in the 
form of an attenuated transfer function. The nonlinear effect 

is accounted for by advancing the diffracted and discretely 
sampled field forward on a point-by-point basis over an 

equivalent incremental Az distance without diffraction, but 
with accretion and depletion of harmonics according to a 
temporal frequency domain solution to Burgers' equation 
(FDSBE).20-22 That is, for some radial position ri, the nor- 
mal velocities U'n (Z + Az, ri) are modified by nonlinear 
mechanisms to U n (Z + Az, ri ) as if the acoustic velocity rep- 
resented a plane wave traveling in the direction of the phase 
front at ri. This concept is illustrated in Fig. 3. 

The model also accounts for the effects of refraction and 

reflection (but not multiple reflections) in the case of propa- 
gation through multiple, parallel layers of fluid medium. 19 
The model's use of a novel harmonic-limiting scheme for the 
FDSBE 23 makes possible some previously intractable high- 
intensity (shocked) propagations. The model's approach 
appears to be a departure from other nonlinear models in its 
extensive use of transform (spatial and temporal) tech- 
niques. There are well-known computational advantages in- 
herent in transform operations, but also pitfalls in imple- 
mentations as discussed extensively in our companion paper 
on linear propagation. 19 These pitfalls can be avoided by 
appropriately windowing the point spread function h or its 
transform H. 

Conceptually, our approach is somewhat akin to the work 
of Pestorius and Blackstock, 24'2• who treated the nondif- 
fracting propagation of plane waves in two domains using 
incremental advances. In the time domain, waveform distor- 

DIFFRACTION & A'I'I'ENUATION SUBSTEP 

INCREMENTAL PROPAGATION 

•• HANKEL TRANSFORM U U• 

Az • ,• 
MULTIPLY BY AI'I'ENUATED PROPAGATION FUNCTION 

Az • ' Y 
INVERSE DIFFRAC'FION NONUNEAR HANKEL TRANSFORM 

SUBSTEP SUBSTEP 

ß ORDER OF SUBSTEPS MAY BE REVERSED 
ß A'I'rENUA• MAY BE INCORPORATED IN Ern,IER SUBSTEP 

FIG. 1. Illustration depicting the concept of incremental field propagation 
using substeps for the diffraction and nonlinear operators. Shown are radial 
(transaxial) plots of normal velocity magnitude of the fundamental (solid 
lines) and the higher harmonics (dotted lines) at different stages in the 
propagation substeps. To highlight the nonlinear effect over Az, the figure 
depicts an initial single harmonic field. 
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FIG. 2. The diffraction substep with its discrete Hankel transform useage 
(here applied to one harmonic using the RFSC approach). 

489 J. Acoust. Soc. Am., Vol. 90, No. 1, July 1991 P.T. Christopher and K. J. Parker: Nonlinear diffractive field 489 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.151.164.114 On: Thu, 27 Aug 2015 16:53:57



NONLINEAR SUBSTEP 

u _ •z _ u 

r r o 

SPECTRUM AT ß 

WAVE EQN. 

12345 

SPECTRUM AT z• + A ß 

2345 

FIG. 3. The nonlinear substep with its FDSBE nonlinear plane-wave opera- 
tor. The multiharmonic field at radial point ro is updated for nonlinear ef- 
fects via the FDSBE algorithm. 

tion over an increment was treated by accounting for the 
dependence of velocity on pressure. In the transform domain 
(temporal frequencies), the losses due to frequency-depen- 
dent attenuation were applied to the spectrum. In our 
scheme, nonlinear effects are accounted for in the temporal 
frequency domain via a Fourier series solution to Burgers' 
equation, and diffraction and attenuation are treated in the 
spatial transform (angular spectrum ) domain. Despite these 
differences, the earlier work serves as a precedent in apply- 
ing incremental effects within different domains. 

I. THE LINEAR DIFFRACTIVE SUBSTEP 

Since the linear effects of diffraction, attenuation, refrac- 
tion, and reflection are extensively covered in the companion 
paper, •9 the model's linear substep will only be summarized 
here. A multiharmonic, acoustic normal velocity (or pres- 
sure) field in a plane can be diffracted Az forward by con- 
volving each of the constituent harmonic fields with an ap- 
propriate point spread function, 

1 h, ( Az, r) = 2•r 
where r is the radial coordinate, n represents the harmonic 
index, and d = x/r• + Az •. Direct sampling of the h, (Az, r) 
functions results in a correct implementation of the (Four- 
ier) convolution theorem. Alternatively, convolution can be 
computed using direct sampling of the analytical Hankel 
transform of h,, 

H, ( Az, R ) 

= [ exp [j2•rAzx/(nf/c)2 _ •2 ], JR I<nf/c, 
- - nf/c ], I> nf/c. 

(2) 

An approach based on the sampling of H• (Az, R ) is compu- 
tationally simpler since it doesn't require the discrete Hankel 
transforming of the h• functions. If nonaxis symmetric 
sources must be propagated, the model can be generalized to 
accomodate them by exchanging the current Hankel trans- 
form for a two dimensional FFT. 

While analytically a repeated convolution over many Az 
increments is straightforward, the use of discrete, finite 
length (spatial) transforms requires some modification to 
avoid convolutional artifacts. This involves "windowing" 
and sampling issues in the spatial and transform domains 
and is explored in the companion paper. •9 Frequency-de- 
pendent attenuation can be included in the diffractive sub- 
step, by either including a loss term with the point spread 
function h,, or by using a ray theory interpretation to ac- 
count for losses in the transform function, H•. •9 

Refraction and reflection (but not multiple reflections ) at 
parallel fluid boundaries can be accounted for in the H•- 
based diffraction (RFSC) substep. Using the angular spec- 
trum interpretation of H,, the problem can be simplified to 
the treatment of plane waves. The integration of the complex 
analytical transmission coefficient for a plane wave into the 
RFSC multistep propagation scheme is presented in detail in 
Ref. 19. The computational cost of the inclusion of the at- 
tenuation, refraction, and reflection operators with the dif- 
fraction substep is neglible. 

II. THE NONLINEAR SUBSTEP 

In general, the acoustic normal velocity field at a point ri 
in a plane given by zi can be represented by a multiharmonic 
waveform (even if the source is pulsed). If this normal veloc- 
ity waveform represented a plane wave traveling in the z 
direction, then the effect of nonlinearity on the waveform in 
traveling over a distance Az could be computed using the 
frequency domain solution to Burgers' equation (the attenu- 
ation term of the FDSBE is not considered here as attenu- 

ation is computed in the linear diffractive substep of our 
model). In this way, the model accounts for the nonlinear 
effect by supplementing each Az linear substep with a Az 
nonlinear plane-wave advancement of the field. The result- 
ing two substep, nonlinear Az advancement of the field is 
depicted in Figs. 1-3. The order of the substeps is reversible, 
but hereafter for discussion purposes will be assumed to be, 
linear first, nonlinear second. 

The nonlinear plane-wave substep then consists of apply- 
ing the FDSBE (minus the attenuation term) to each multi- 
harmonic radial field sample that has been output by the 
most recent linear substep. The ith iteration of the FDSBE 
algorithm can be written 

u• (z+ Az, i) u• (z+ Az, i)+j fi•rf•z ("••__• = ' ku;,u•,_•, 
2c 2 

+ • nu•,u•,*__ • , n = 1,2,...,N, (3) 
k=n 
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where/3 is the nonlinear parameter 1 + ( 1/2) B/A, fis the 
fundamental frequency, and u, (z q- •z,i) denotes the nth 
term in an N term complex Fourier series describing the 
temporal normal velocity waveform at the ith radial field 
sample in the plane z q- •z. Note that in the bracketed sum- 
mation terms the u•, (z q- •z,i) terms have been abbreviated 
by dropping the (z q- •z,i) designation. This computation is 
repeated for each ofthe N radial samples (i = 0,1,...,N - 1 ). 
The first summation in large parentheses represents the ac- 
cretion of the nth harmonic by nonlinear combination of 
other harmonics that have a sum frequency of nf The second 
summation, with conjugation, can be interpreted as a deple- 
tion of the nth harmonic to other harmonics with a differ- 

ence frequency of nf 
To better account for wave or phase front curvature with- 

in the nonlinear substep, correction terms have been added 
where •z is replaced by •z/cos 0 [ u• (z,i) ] and u, (z,i) is 
replaced by u• (z,i)/cos0 [ u• (z,i) ] to account for the direc- 
tion and magnitude of the actual (not normal) field at radial 
point i. Also, 0 [ u• (z,i) ] is the angle that the phase front of 
the fundamental harmonic at the point (z, ri) makes with 
respect to the z axis. This angle (hereafter referred to as the 
directionality) is obtained by calculating the rate of change 
of phase of the fundamental with respect to radial distance: 

0 [ u, (z,i) ] = •rr tan •ee[ u• (z,r) ] r= r i (4) 

Thus, the model assumes that at each radial point, the phase 
fronts of the harmonics all have the same directionality as 
the fundamental. The assumption that all harmonics travel 
together in the same direction (at any given radial point) is 
implicitly required by the use of the nonlinear plane-wave 
equation. Actually, calculations and comparisons of the di- 
rectionalities of the first four harmonics have shown this 

assumption of the consistency of the directionalities of the 
different harmonics is only loosely justifiedwat any given 
radial point in a given plane the different harmonics have 
small differences in their phase front directionalities (this 
will be the subject of a later report). Note that the model's 
explicit inclusion of the field's local directionality is in con- 
trast to the established parabolic wave model's 9'•6 implicit 
assumption that the directionality is consistent with the 
computational coordinates. This implicit assumption is val- 
id only for the simple, nondiffracting cases (plane, cylindri- 
cal, and spherical waves) with the obvious coordinate sys- 
tems. 

One serious shortcoming of the frequency domain solu- 
tion to Burgers' equation (FDSBE) is the large number of 
harmonics required to propagate shockwaves. (This prob- 
lem is also encountered in the comparable established time 
domain solutions, as they also require the frequency domain 
to represent medium attenuation.) When the shock front 
discontinuities are large and steep•as routinely occurs with 
high intensity fields in lightly attenuating fluidswthen the 
number of harmonics required to represent the discontinui- 
ties can be in the hundreds or even thousands. In terms of the 

number of harmonics N, the computational complexity of 
the single step of the FDSBE is of order N'-. Additionally, 

the step size requirements drop roughly in proportion to N, 
thus making the overall complexity of the FDSBE-based 
nonlinear (plane-wave) propagation approximately N3 
(Ref. 23). Combining this with the N 2 complexity of the 
DHT-based single-step diffraction operators 19 (N2, since 
the number of radial samples N needed rises roughly in pro- 
portion to N), this gives an N 5 computational complexity to 
our nonlinear diffraction model. Consequently, there is a 
great need to limit N and still maintain good accuracy. 

An approach to limiting the number of harmonics used in 
the FDSBE operator has been found that works well with 
initially sinusoidal sources. 23 The approach involves implic- 
itly limiting the steepness of the shockfronts formed by arti- 
ficially ramping up the medium's attenuation function. Spe- 
cifically, the exponential attenuation constant b is replaced 
by the function 

b(n) -b+ [(n-- 1)/N].q, (5) 

where q is a constant describing the exponential ramping of 
the medium attenuation function. This scheme has proven to 
be accurate and relatively insensitive to variations in q for 
propagating continuous plane waves, with the only harmon- 
ic distortion produced appearing in the highest harmonics 
included in the propagation (as well as those not included, 
which are implicitly assigned zero amplitude). The ap- 
proach should then allow for accurate modeling of nonlinear 
continuous diffractive fields since the only additional error 
should be attributable to differential diffraction effects (be- 
tween the harmonic-limited scheme and a very large, or 
ideally infinite, harmonic scheme) and very little energy is 
found in the highest harmonics. The harmonic-limited 
scheme greatly simplifies, and in some cases makes tractable, 
the nonlinear propagation of high-intensity sinusoidal 
sources. For very large amplitude sinusoidal sources involv- 
ing near-field shocks though, even this harmonic-limited 
scheme can require excessive harmonics (harmonic require- 
ments rise rapidly to insure the stability of the waveform 
artifacts associated with a nonzero q under the strong effects 
of near-field diffraction). In this case, and for the case of 
nonlinear pulse propagation, a much more stable limited- 
harmonic nonlinear algorithm has been developed in the 
time domain. 

III. CALCULATION OF THE SPATIAL HEATING RATE 

The two substep, incremental nonlinear advancement of a 
diffractive field can be modified to permit the computation 
of the temporal average heating rate associated with the ab- 
sorption of the propagating field. The modification involves 
treating the field as plane wavelike in the immediate vicinity 
of any given point (as is done with the nonlinear substep) 
and thus estimating the heating rate as the divergence of the 
intensity. 26 The multiharmonic field at any point can, using 
the impedance relation and the directionality, be converted 
into values of the average acoustic intensity, I•, n = 1,2,..., 
N, where t• = (pc/2) ([u• 12/COS20) is the temporal average 
intensity of the nth harmonic component at the point. The 
corresponding spatial heating rate can then be computed as 
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N 

S= • 2Int•(rtf) b•n•, (6) 

where the modified power law relation for attenuation (5) is 
used. 

IV. COMPUTATIONAL ISSUES 

Several different implementations of the nonlinear field 
propagation model have been developed. Of these, the most 
general and practical implementation developed for multi- 
layer medium propagation will be discussed. This model 
uses the very efficient RFSC multistep diffraction operator 
exclusively. The resulting algorithm is simply a multistep 
RFSC linear propagation algorithm (as presented in Ref. 
19) with a nonlinear substep applied between each RFSC 
linear substep. To simplify the computation the model al- 
lows for a specified radial tapering of the field of nonlinear 
computation. This tapering can be based on a linear propa- 
gation of the field to determine where the field amplitudes 
are sufficiently large to involve nonlinear effects. Also, the 
model allows the propagation to be partitioned into several 
different regions, each with its own medium parameters and 
propagation parameters. Each region is specified by a start- 
ing and ending z coordinate. 

The propagation parameters for any given region include 
the axial step size Az and the maximum number of harmon- 
ics Nmax. The reason a maximum harmonic is specified is 
that the model adds harmonics dynamically as required us- 
ing a simple algorithm based on the amplitudes of the highest 
harmonic currently included in the propagation. The maxi- 
mum number of harmonics should be large enough to accu- 
rately describe the anticipated nonlinear effects. The size of 
the nonlinear effects can be estimated by inputting the maxi- 
mum linear field propagation amplitudes found in a region 
into the FDSBE. In general, if no shocks are anticipated then 
five to ten harmonics can adequately describe a continuous 
wave field. On the other hand, if shockwaves are expected 
then 30 to 50 harmonics and possibly a nonzero excess at- 
tenuation parameter q (if the amplitudes are quite large 
and/or the absorption is small) will be required. 

The selection of a Az step size for a region is based on an 
accurate accounting of the effects of diffraction, absorption, 
and nonlinear growth on the propagating harmonics. If the 
near-field region is not of excessively high amplitudes then a 
Az small enough to clearly display the axial variations of the 
fundamental frequency (except in the extreme near field) is 
adequate in describing the nonlinear growth of the field's 
higher harmonics. In the focal or far-field region of a high- 
amplitude device the selection of Az should be based on the 
accurate accounting for of the attenuation and nonlinear 
growth of the highest harmonic. A rule for selecting Az in 
such a region is to choose it small enough such that the resul- 
tant exponential attenuation across Az for the highest har- 
monic is no smaller than 0.7. A step size small enough to 
meet this criteria insures the accuracy of the nonlinear oper- 
ator (3). Such a Az has accurately described the joint effect 
of nonlinearity and attenuation in one dimensional propaga- 
tion 23 and diffractive propagation. 

The radial sampling rate of the field should be large 
enough to describe the significant spatial frequency content 
of the highest harmonic included in the propagation. For 
focused field propagations involving up to 50 harmonics, a 
radial sampling rate of 4 X the Nyquist rate of the funda- 
mental has given very good results. For unfocused fields, 1 or 
2 X the Nyquist rate of the fundamental has worked very 
well. Confirmation of the adequacy of the sampling rate is 
obtained by examining the radial profiles of the highest har- 
monics. If the radial sampling rate is too small, then these 
profiles will, in their radial extent, prematurely lose coher- 
ence (before the limited precision of the numerical represen- 
tation dictates). 

To reduce the time requirements of the diffraction opera- 
tor multiple (embedded) transform tables are utilized. Thus 
instead of using one large Y(i,m) table with an N and a T 
large enough for the fundamental harmonic for all the other 
harmonics, two smaller tables are added to simplify the 
transforming of the higher harmonics. These tables utilize 
smaller N's and T's appropriate to the reduced radial extents 
of the higher harmonics (but which have the same radial 
spatial samples as the fundamental's over their reduced radi- 
al extent). 

V. EXAMPLES 

Du and Breazeale • 3 measured and predicted the finite am- 
plitude pressure field of an unfocused 2-MHz Gaussian 
transducer operating in water under quasilinear conditions. 
Their prediction was based on analytical expressions derived 
using the parabolic approximation and the method of 
successive approximations. Their axial field predictions and 
measurements for the fundamental and second harmonic 

amplitude are shown in Fig. 4(a). Note the scaling of the 
second harmonic ( X 100) and the discrepancy between the 
prediction amplitudes that cross at about 20 cm and the mea- 
surement points which do not. The corresponding results 
obtained with our model are depicted in Fig. 4(b). Our cal- 
culation used six harmonics and the normal velocity output 
was converted to pressure output using the impedance rela- 
tion. The agreement between the corresponding predicted 
results is good. The radial harmonic amplitudes at z = 15 cm 
for the fundamental and second harmonic as measured and 

predicted by Du and Breazeale are shown in Fig. 5 (a). Both 
harmonics have been normalized to have an on-axis ampli- 
tude of 1. The corresponding results predicted by our model 
are displayed in Fig. 5(b). Also shown are the third and 
fourth harmonic amplitudes. The agreement between our 
model results and Du and Breazeale's measurement and the- 

ory is good. The agreement between the results is not surpris- 
ing because the parabolic approximation should accurately 
describe an unfocused Gaussian beam. 

Baker et al. 27 measured and predicted (using the parabol- 
ic approximation model) the nonlinear pressure field of an 
unfocused, plane circular piston source operating in water. 
The source had an initial frequency of 2.25 MHz, an initial 
amplitude of 100 kPa, and a radius of 19 mm. The measured 
axial harmonic amplitudes for the first three harmonics are 
shown for the first 750 mm of propagation in Fig. 6 (a). The 
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sian, axial harmonic pressure amplitudes of Du and Breazeale ( 1985 ). (a) 
Their axial results, note the scaling of the second harmonic. (b) Our com- 
puted results (using the same scaling). 

corresponding results from our model (using 50 harmonics ) 
are shown in Fig. 6(b). The model's normal velocity output 
has been converted to pressure using the impedance relation. 
Baker et al.'s log scaled second and third harmonic ampli- 
tudes, as measured and predicted, are shown in Figs. 7 (a) 
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harmonics. 
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and 8 (a), respectively. The near-field errors in their predict- 
ed second and third harmonic amplitudes are consistent 
with the limitations of the parabolic approximation. 27 Fig- 
ures 7 (b) and 8(b) display the corresponding predictions of 
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FIG. 8. Comparison with the log scaled, measured, and computed third 
harmonic axial amplitude of Baker et al. (a) Their measured and predicted 
results (solid line is measured). (b) Our corresponding computed result. 

our nonlinear propagation model. The computed results 
agree with the measurements in the near field and the far 
field. The far-field agreement is best seen in comparing Fig. 
6(a) and (b). The model's near-field results are visibly in 
close agreement with the measured values even when the 
parabolic approximation model fails. Note the molar like 
structure between 100 and 160 mm in the measured second 

harmonic axial result of Fig. 7 (a) and the corresponding 
structure in the model computed result of Fig. 7(b). The 
small discrepancy in the near-field nodal depths of our pre- 
dicted second harmonic result and their measured result 

could be due to the limitations of measuring the near field 
with a 1-mm diameter membrane hydrophone. 

Figure 9 (a) depicts the measured and predicted radial 
harmonic pressure profile of Baker et al., at an axial distance 
of 275 mm. This axial distance corresponds to the location of 
the last axial minimum of the fundamental. Figure 9(b) 
shows the corresponding results computed using our model. 
The normal velocity output of the model was again convert- 
ed to pressure using the impedance relation (as a check the 
Rayleigh integral •9 was also used but gave the same result). 
One interesting difference between the computed results of 
both models and the corresponding measured results is the 
drop off rate of the second and third harmonic profiles. The 
computed results roughly agree with each other, but they 
show a steeper drop off rate in harmonic amplitude than was 
measured. Baker et al. suggest that the limitations of the 
parabolic approximation, combined with the low signal lev- 
els off-axis, explain the off-axis difference between their mea- 
sured and computed second and third harmonic amplitude 
curves. Our model should perform as accurately at these off- 
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FIG. 9. Comparison with the log scaled, measured, and computed radial 
harmonic amplitudes of Baker et al. at z = 27.5 cm. (a) Their measured and 
computed results (solid lines are measured). (b) Our corresponding com- 
puted results. (c) Expanded range depiction of our results. Note the well- 
formed higher harmonic sidelobes. 
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axis radial distances as on-axis. In both cases, the computed 
directionalities of the fundamental and higher harmonics 
were parallel to the z axis over the radial range of interest and 
thus no differential directionalities amongst the harmonics 
existed (which is not accounted for in our model). Figure 
9(c) is an expanded depiction of the computed results 
shown in Fig. 9(b). Note the well formed sidelobes of the 
second and third harmonics. 

In the companion linear paper, •9 the field of a 3-MHz 
focused piston source operating in a water medium and in a 
layered fat/liver, biomedical imaging medium was consid- 
ered [ see Fig. 9 (a) and (b) ]. The water medium had param- 
eters c = 1500 m/s, p = 1.0 g/cm 3, a = 0.00025 Np/cm, 
and b = 2. The two-layer medium consisted of 2 cm of fat 
with parameters c = 1460 m/s, p = 0.95 g/cm 3, a = 0.15 
Np?cm, and b = 1, followed by 10 cm of liver with param- 
eters c = 1570 m/s, p = 1.05 g/cm 3, a = 0.03 Np/cm, and 
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FIG. 10. Axial harmonic normal velocity amplitudes for a 3-MHz focused 
piston transducer. The peak source intensity is 3 W/cm 2. First four har- 
monics shown. (a) Water propagation. (b) Fat/liver propagation (2 cm of 
fat followed by 10 cm of liver). 
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FIG. 11. Radial harmonic amplitudes for the focal plane of the 3-MHz fo- 
cused piston transducer considered in Fig. 10. First four harmonics shown 
log scaled. (a) Water propagation. (b) Fat/liver propagation. 

b = 1.3. 28'29 The transducer had a geometric focal length 
(F) of 10 cm, a radius of 1 cm, and an initial source peak 
intensity of 0.1 W/cm 2. The focusing was accomplished by 
applying a spherically focusing phase factor (e •ø{r), where 
O(r) = (2rrf/c)x/r 2 q- F 2) on the source plane amplitudes. 
By increasing the source intensity of the transducer to 3.0 
W/cm 2, the resulting fields show significant nonlinear ef- 
fects. Our nonlinear model was used to compute these result- 
ing fields, and in particular, to gain insight into the actual 
fields produced by such medical devices in imaging the body 
at these intensities. 

The nonlinear parameters/3 used in modeling the three 
mediums were 3.5 for water, 4.7 for liver, and 6.5 for fat. 3ø 
The model's axial results for the two cases are shown in Fig. 
10(a) and (b), in the form of the first four harmonic ampli- 
tudes. The amplitudes shown in this example represent the 
normal velocity component of the acoustic field (the stan- 
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FIG. 12. Overlay of the time waveforms for the 3-MHz focused piston 
transducer of Fig. 10 taken at the focal point. The water propagation case is 
the solid (shocked) waveform. The fat/liver propagation case is the dotted 
(nearly sinusoidal) waveform. 

dard input and output to the model). The corresponding 
radial focal plane harmonic amplitudes are depicted in Fig. 
11 (a) and (b). These results show a marked decrease in the 
amount of nonlinear distortion present in the fat/liver biolo- 
gical imaging medium, in spite of the larger nonlinear con- 
stants for these materials. This reduction is due to the in- 

creased absorption of the biological medium that results in 
greatly reduced focal wave amplitudes. These reduced am- 
plitudes, as well as the reduced nonlinear distortion, can be 
seen clearly in the overlay of the corresponding focal time 
waveforms shown in Fig. 12. The water propagation utilized 
the specified limit of 50 harmonics, while the fat/liver propa- 
gation utilized only 8 harmonics. An excess attenuation fac- 
tor q of 0.35 was necessary to obtain the water results. The 
use of this excess attenuation factor results in a small and 

predictable perturbation in the computed focal shock wave- 
forms. This perturbation can be seen as the ripple at the base 
and top of the shockfront of the water focal waveform in Fig. 
12. These results suggest that in the ultrasound imaging of 
tissue such as liver the nonlinear field effects are much 

smaller than in the corresponding measurement medium 
(water). Future runs with the model in other biological 
imaging tissue and with other focused sources should pro- 
vide insight into the possible nonlinear field effects associat- 
ed with commercial biomedical ultrasonic imaging devices. 

One nonlinear acoustic phenomena that has received at- 
tention recently as a possible source of bio-effects, and as a 
possible treatment for tumors, is nonlinear enhanced tissue 
heating. The absorption of any acoustic wave is frequency 
dependent. The higher the frequency content of the wave, 
the faster it is absorbed. Because nonlinearity continuously 
transforms low-frequency energy to higher frequency ener- 
gy it accelerates the absorption of any acoustic wave. One 
outstanding example of this phenomenon occurs when an 
intense nonlinear focal field forms in a lightly attenuating 
medium and then enters a strongly attenuating medium. As 
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FIG. 13. Axial spatial heating rate for a 3-MHz focused piston transducer. 
The peak source intensity is 6 W/cm 2. The medium consists of 10 cm of 
water followed by 2 cm of fat. (a) Log scaled result. (b) Linear scaled result 
in the focal region (7-12 cm). The jump at the water/fat boundary is from 
41-425 W/cm 3. 
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FIG. 14. Overlay of the axial waveforms for the piston transducer of Fig. 13 
from z = 9.9 cm (in water, solid line) and z = 10.5 cm (in fat). 
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FIG. 15. Axial harmonic normal velocity amplitudes for a 3 MHz focused 
piston transducer of Fig. 13. First four harmonics shown. Note the rapid 
losses in the fat layer (after a small increase due to the difference in sound 
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FIG. 16. Fundamental and second harmonic axial normal velocity ampli- 
tudes for the previously considered 3-MHz focused piston transducer oper- 
ating at 3, 10, and 30 W/cm 2. (a) Overlay of the fundamental harmonic 
amplitudes. (b) Overlay of the corresponding second harmonic amplitudes. 
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FIG. 17. Fundamental and fourth harmonic focal plane radial amplitudes 
for the 3-MHz focused piston transducer operating at 3, 10, and 30 W/cm 2. 
(a) Overlay of the fundamental harmonic profiles. Note the shift and loss in 
depth of the nodes associated with increasing source amplitudes. (b) Over- 
lay of the fourth harmonic profiles. Note the broadening of the main lobes 
and the "shoulders" visible at 10 and 30 W/cm •. 

the field enters the highly absorbing medium, it is rapidly 
attenuated producing a region of high acoustic heating. An 
example of this phenomenon is displayed in Figs. 13-15. 
Here, the previously described 3-MHz focused transducer is 
operated at a source intensity of 6 W/cm 2 with an initial 
medium of water and a subsequent absorbing layer of fat. 
The water/fat boundary plane is located at the geometric 
focal distance of 10 cm. Fifty harmonics and an excess at- 
tenuation factor q of 0.5 were used. Figure 13 (a) and (b) 
show the computed axial heating rate in W/cm 3 associated 
with the attenuation of the field. Figure 13 (a) is log scaled, 
while (b) linearly depicts the results in the focal region (7- 
12 cm). The axial heating rate jumps from 41-425 W/cm 3 at 
the boundary between the two mediums. Also, note the rapid 
increase in the heating rate starting at 7.5 cm (in water) due 
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FIG. 18. First four harmonic amplitude profiles at the focal plane for the 3-, 
10-, and 30-W/cm 2 field propagations. (a) Harmonic radial profiles for the 
3-W/cm 2 source amplitude case. (b) Harmonic radial profiles for the 10- 
W/cm 2 case. (c) Harmonic radial profiles for the 30-W/cm • case. 

FIG. 19. Prefocal region complexity of the 30-W/cm: field. The 20th, 30th, 
40th, and 50th harmonic axial amplitudes from z = 6.4 to z = 7 cm. 

to the onset of focal nonlinear steepening (compare with 
axial harmonic amplitudes depicted in Fig. 15). Figure 14 is 
an overlay of the axial waveforms at z = 9.9 cm (in water) 
and at z = 10.5 cm (0.5 cm into the fat layer). Note the big 
drop in amplitude from the water shockwave. Finally, Fig. 
15 shows the axial harmonic amplitudes with their rapid 
decline visible in the fat layer. One example in which an 
ultrasound scan could behave in an analogous manner is 
when a fetus is imaged through the lightly attenuating blad- 
der and amniotic fluid. Potentially significant heating cases 
such as this can be examined with the model. 

The phenomenon of beam broadening 7 associated with 
nonlinear effects and increasing source amplitudes has also 
been examined using the model. Using the same 3-MHz fo- 
cused piston transducer and a medium of water the fields 
associated with source amplitudes of 3, 10, and 30 W/cm 2 
were computed. The runs utilized 50 harmonics with an ex- 

cess attenuation factor q of 0.35, 50 harmonics with a q of 
0.5, and 70 harmonics with a q of 0.4, respectively. The cor- 
responding fundamental harmonic axial amplitudes are 
shown overlayed in Fig. 16 (a). Note the loss of gain in the 
focal region amplitudes of the fundamental at the higher 
source intensities due to nonlinear losses. The corresponding 
second harmonic axial amplitudes are shown overlayed in 
Fig. 16(b). Note the shift in the position of the last axial 
minimum as the source amplitude is increased. This shift is 
clearly visible in the overlay of the second harmonic ampli- 
tudes [Fig. 16(b) ] and barely visible in the overlay of the 
fundamental amplitudes [Fig. 16(a) ]. An overlay of the fo- 
cal plane (z = 10 cm) fundamental harmonic profiles is de- 
picted in Fig. 17 (a). Note the loss in nodal depth associated 
with increasing nonlinear effects and also the slight shift ra- 
dially outward (broadening) of the corresponding nodes. 

A more dramatic depiction of this nonlinearly generated 
broadening and distortion of the harmonic profiles is shown 
in Fig. 17 (b). Here the corresponding fourth harmonic am- 
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plitude profiles are overlayed. Initially, the nodal depth in- 
creases near the axis as the source amplitude goes from 3-10 
W/cm 2, then it decreases as the source amplitude goes up to 
30 W/cm 2. Near the axis, the increased source amplitude 
produces increasing nodal shifts. Far off-axis though, the 
nodes remain aligned at all three source amplitudes. At in- 
termediate radial distances there are bulges or shoulders in 
the profiles of the 10 and 30 W/cm • fourth harmonic ampli- 
tudes. These are located at about r -- 0.5 cm and r -- 0.7 cm, 
respectively. These shoulder regions represent the intersec- 
tion of the near axis, broadened portion of the profile with 
the far off-axis, unshifted portion of the profile. 

Figure 18 (a)-(c) depict the first four harmonic, focal 
plane amplitude profiles of the 3, 10, and 30 W/cm • field 
propagations, respectively. The progressive broadening of 
the mainlobe can be seen clearly, especially amongst the 
higher harmonics. Finally, Fig. 19 highlights the prefocal 
region complexity of the 30-W/cm • field. Figure 19 depicts 
the 20th, the 30th, the 40th, and the 50th harmonic axial 
amplitude from z = 6.4 to z - 7 cm. 

Vl. CONCLUSIONS 

A new model for the nonlinear propagation ofdiffractive 
acoustic fields has been presented. The model explicitly ac- 
counts for the directionality of the field at each point and is 
not restricted to the established parabolic wave approxima- 
tion to diffraction. In the case of propagation through multi- 
ple parallel layers of fluid medium, the model accounts for 
the effects of refraction and reflection (but not multiple re- 
flections). Usage of a harmonic-limiting scheme with the 
frequency domain solution to Burgers' equation allows for 
the computation of some high-intensity shocked fields. The 
model also computes the spatial heating rate associated the 
field's absorption. Further work is planned in extending the 
implementation of the model to handle nonradially symmet- 
ric sources, in examining the possibility of deleterious tissue 
heating associated with clinical imaging, and in considering 
the performance of commercial ultrasonic medical devices 
including lithotripters. 
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